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Disclaimer

• My previous benchmark experience
• Limited to being a user

• My main background is in provenance
• . . . mostly for RDBMS

• The main point of this talk (visions)
• Provenance as a benchmark use-case
• Provenance as a supporting technology for benchmarking

• I will make some outrageous claims to get my point across
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What is Provenance?

• Information about the creation process and origin of data

• Data items and collections
• Data item = atomic unit of data

• Transformation
• Abstraction for processing
• Inputs and outputs are data items (collections)

Example
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Types of Provenance

• Given a data item d

Data Provenance

• Which data items where used in the generation of d
• Representation: e.g., a set of data items

Transformation Provenance

• Which transformations generated d
• transitively

Additional Information

• Execution Environment

• User

• Time

• . . .
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Data and Transformation Provenance

Example (Data Provenance)

Provenance
for

Data 
Provenance
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Data and Transformation Provenance

Example (Transformation Provenance)

Transformation 
Provenance

Provenance
for
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Coarse-grained vs. Fine-grained Data Provenance

Coarse-grained Provenance

• Transformations are handled as black-boxes

• ⇒Each output of transformation
• . . . depends on all inputs

Fine-grained Provenance

• Consider processing logic of transformation to determine
data-flow

• ⇒All data items that contributed to a result
• Sufficiency: sufficient to derive d through transformation
• Necessity: necessary in deriving d through transformation

‘
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Granularity

Example (Coarse-grained)

Provenance
for

coarse
grained
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Granularity

Example (Fine-grained)

Provenance
for

fine
grained
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Use-cases

• Data debugging
• E.g., tracing an erroneous data item back to erroneous inputs

• Trust and Quality
• E.g., computing trust based on trust in data items in

provenance

• Probabilistic data
• Computing probability of result based on probabilities in

provenance

• Security
• Enforce access-control on query results based on provenance

• Understanding misbehaviour of systems
• E.g., detecting security breaches
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Annotations

Provenance as Annotations

• Model provenance as annotations on the data

• ⇒Provenance management =
• Efficient storage of annotations
• Propagating annotations through transformations

Example (Systems applying this approach)

• Perm

• Orchestra

• DBNotes

• Trio

• . . . and many more
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Annotations
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Size Considerations

• Provenance models dependencies between inputs and outputs
of a transformation
• ⇒A subset of Inputs × Outputs
• ⇒Can be quadratic in size

• DAG of transformations
• multiply by maximal path length

• Provenance of two data items often overlaps
• Reuse of intermediate results
• Coarse-grained provenance

‘
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Big Provenance Challenges

• Big data analytics is all about agility
• ⇒un/semi-structured data and no extensive meta-data

available
• ⇒hard to define provenance model

• Transparency of distribution
• Provenance use-case may require location information

• Analytics that cross system boundaries
• Inter-operability of storage formats and systems
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Example - Provenance for Map-Reduce Workflows

• Fine-grained provenance for workflows that are DAGs of map
and reduce functions

• Add provenance to values: (key , value)→ (key , (value, p))

• Provenance determined by map/reduce function semantics

• Wrap map and reduce functions to handle provenance
• Strip of and cache provenance
• Call original function
• Re-attach provenance according to function semantics

References

R. Ikeda, H. Park, and J. Widom.

Provenance for generalized map and reduce workflows.
CIDR, 273-283, 2011.
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Example - OS Provenance for the Cloud

PASS with Cloud Storage Backend

• File and process level provenance

• Each node runs a modified linux kernel (PASS)

• Intercept system-calls for file and process creation

• Store provenance in Amazon S3, SimpleDB, and/or SQS

Instrumenting the Xen Hypervisor

• File and process level provenance for virtual machines

• Intercept “hyper-calls” for file and process creation

• Store provenance in DB
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Example - OS Provenance for the Cloud

References

M.I. Seltzer, P. Macko, and M.A. Chiarini.

Collecting provenance via the xen hypervisor.
TaPP, 2011.

K.K. Muniswamy-Reddy, P. Macko, and M. Seltzer.

Provenance for the cloud.
FAST, 15–14, 2010.
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Example - Sketching Distributed Provenance

• File + process level provenance modelled as DAG
• intra- and inter-host dependencies
• inter = socket communication
• Intercept system calls

• Distributed provenance graph storage
• Each node stores the part of the provenance graph

corresponding to its local processing
• Links to other host for inter-host dependencies

• Query provenance
• Nodes exchange summaries of provenance graphs using bloom

filters

References

T. Malik, L. Nistor, and A. Gehani.

Tracking and sketching distributed data provenance.
eScience, 190–197, 2010.
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Take-away Message

• Challenging problems

• Approaches that address distribution directly

• Approaches that map relational techniques to Big Data

• ⇒more work needed!
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Why Benchmark?

Impress the Customer - Competition

• Competition should be fair
• Stable benchmark
• Similar to real world workloads
• Precise definitions
• ⇒probably several iterations of design + test

Understand (and Improve) System Performance

• Stable benchmark

• Similar to real world workloads

• Profiling and monitoring
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Benchmarking 101

A Comprehensive Benchmark . . .

• Define Parameters

• Data-set specifications
• Structure and interrelationships
• Value ranges and distributions
• Data type definitions
• Provide data generator and/or validator

• Workload specification
• Specify jobs
• Restrictions for running the jobs
• Provide workload generator and/or validator

• Benchmark metrics specification
• What to measure
• How to measure
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Benchmarking 101

A Comprehensive Benchmark . . . TPC-H

• Define Parameters e.g., SF

• Data-set specifications Standard Specification
• Structure and interrelationships Schema provided
• Value ranges and distributions e.g., L DISCOUNT column values

between 0.00 and 1.00
• Data type definitions e.g., date is YYYY-MM-DD at least 14

years range
• Provide data generator and/or validator dbgen

• Workload specification Standard Specification
• Specify jobs Query and update workloads
• Restrictions for running the jobs
• Provide workload generator and/or validator qgen

• Benchmark metrics specification Standard Specification
• What to measure e.g., Composite Query-per-Hour Metric
• How to measure e.g., first query char to last output char
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Big Data Benchmarking

• Data generation is a necessity
• Shipping pre-generated datasets of Big Data dimensions is

unfeasible

• Complex and mixed workloads better match real-world use of
Big Data analytics
• Hard to understand why a system performs bad/well on a

complex workload

• Robustness of performance and scalability important
⇒Measure it!
• What is a good metric for robustness and how to compute it?
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Generating Large Datasets and Workloads

• Provenance data is large

• Compute provenance to generate large datasets
• Run provenance-aware system to collect provenance for a small

workload
• The resulting data-set can be used in the benchmark

• ⇒Generate large data-sets from simple “generators”

Example

• Simple task: sharpen an image

• Apply approach that instruments the program to detect
data-dependencies as provenance

• Huge and very fine-granular provenance
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Stress-Testing Exploitation of Data Commonalities

• Provenance data large, but large overlap

• ⇒Use provenance to test how well a system is able to exploit
data commonalities

Example

• Streaming data with multi-step windowed aggregation

• ⇒Can predict overlap in provenance

• Generate provenance

• Queries over provenance as workload
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Data-centric Performance Information as Provenance

• Assume the hypothetical existence of god
• Big provenance system
• Efficiently computes all types of provenance
• For any Big Data system
• Also evaluates any types of queries

Data-centric performance information as provenance

• For each data item use god to record
• execution times of each transformation in provenance
• history of data movements for each data item
• . . .

Example (Measure Robustness)

• Benchmark that requires several runs of mixed job workloads

• Workloads between runs overlap

• Performance metric: Resource consumption variation per job
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Using Provenance in Profiling

Profiling and Monitoring

• Identify causes for (benchmark) results

• Even more important for Big Data
• Diverse workloads
• Distribution
• . . .

Example (How can Provenance help?)

• How do I profile a program on one node
• e.g., instrument and collect statistics about execution

• Provenance provides data-centric view
• Identify repeated computations

• Overlaps in provenance (same data, different
nodes/transformations)

• Identify unnecessary computations
• Computations that are not in the fine-grained provenance of

anything
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Conclusions

• Big Provenance: Many interesting research problems

• Provenance as benchmark use-case

• Provenance for benchmark data generation

• Provenance-based performance metrics

• Supporting profiling and monitoring

Slide 22 of 23 Boris Glavic Big Data Provenance - Conclusions



Questions?

Info

• Boris Glavic: http://www.cs.iit.edu/~glavic/

• IIT DBGroup: http://www.cs.iit.edu/~dbgroup/

• Perm: http://permdbms.sourceforge.net/
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