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An Array DBMS: Rasdaman

Goal of rasdaman database:
@ handle raster data

TerraLib

@ massive n-dimensional

Oracle genraster

Sensor', Image_, ESRI ArcSDE

SciQL.

Model & Statistics DB '

SciDB

@ Tile-based architecture ploams Bumdse  opentsD, Exasg

EXTRA/EXCESS Grid & Gridfield
- -

n-D array — set of n-D tiles o

@ adapting storage to access pattern s sss355 5z
(preserve locality of reference)
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An Array DBMS: Rasdaman

@ declarative, minimal, safe Array Algebra:

@ Intensive user studies: statistics, image, signal processing
@ minimally invasive DBMS integration

@ new attribute type: array<celltype, extent>

| ArraySet| OID | amay
/. oid 1 .I
metadata [ aff T att 2] attn _ﬂ
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key2 . | oid2 4 0id3
key3 — [od3 — 1
oid4 ()
oid 5 .l

@ maps d-dimensional Euclidean hypercube X
onto value set V
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An Array DBMS: Rasdaman

@ implements SQL-embedded DML with array operators
e select/insert / update / delete + partial update

select img.scene.green[x0:x1,y0:y1] > 130
from LandsatArchive as img
where some_cells(img.scene.nir > 127)

@ Web mapping, image & signal
processing statistics,
linear algebra, pattern mining,
scientific analytics
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What is Big Data?

@ somehow connected to volume
@ but volume is moving target
@ not only petabytes are Big Data
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What is Big Data?

@ unless you are reeeaally big, storage volume is not biggest
problem

@ to do proper analysis then is the difficulty

@ suboptimal access patterns show up

@ — inability of existing DB to scale

e cardinality of data is typically small compared to volume

e repeated observations of time or space

@ many datasets have inherent temporal or spatial dimensions
e but not ordered accordingly to preserve locality

e analysis then results in random-access patterns — sloow.
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What is Big Data?

@ ETL may not be the right solution...
@ big volumes need to be transferred for further processing

Meta-definition:
"Any point in time when data volume forces us to look beyond
the tried-and-true methods that are prevalent at that time'
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Array database domain

Diverse world
@ different approaches to implement arrays on databases
exist
e MonetDB?
e SciDB*
@ no unified query language available
@ different usage scenarios

e (web-) service providing access to many users
@ but also personal research tool to analyse data

3van Ballegoiji et al., 2005, www.monetdb.org ee=?| D s
4P. Cudre-Mauroux et al., 2009, www.scidb.org
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Benchmarking Array DBMS

Benchmarks should be... [Gray 1993]

relevant
@ — map real-world needs
— rather practice driven
@ systematically cover features and data properties
— apply to different application domains
simple
@ obviously some trade-off to previous point needed
portable

@ as no unified query language available
— high level description of tasks to fulfill

scalable
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Benchmarking Array DBMS

Need to test

further details follow...
@ array features
e dimensionality, cell types
@ data properties
e volume, sparsity
@ array query operations
@ domain specific features
@ special operations, transformations
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What needs to be tested... relevance

number of dimensions

@ low-dimensional (1-D - 5-D) !
1-D environmental sensor time series rJ i
2-D satellite images, seafloor maps v
3-D x/y/t image time series
and x/y/z geophysics data
4-D x/y/z/t climate and ocean data

@ medium-dimensional (6-D - 12-D)
OLAP

@ high-dimensional (up to thousands)
Data-Mining, collection of features

—
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What needs to be tested... relevance

Space time cube
@ Satellite creates several scenes
@ Satellite scene referenced by latitude/longitude + time
@ at least twice per year each point should be mapped
@ set of scenes that have temporal and spatlal overlap

Example qery'

@ give me the Near-field infrared (NIR) values between 2007
and 2009 in Vienna AV -
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What needs to be tested...

Dimensions and cell type constitute array model features
@ cell types
e single
@ records (e.g. colored pixel)
e domain specific data structures
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What needs to be tested... scaleability

Data properties
@ Volume of data
e range MB to PB
@ Sparsity of data

e sparse arrays like statistical data cubes
e dense arrays like satellite imagery
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Relevance in array database domain

Array is functiona: X — V

Query operations
@ on X: trimming, slicing

K-‘

y

i

@ on V: pixel-wise addition of images

@ on the function itself: histoaram
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Relevance in array database domain

Array is functiona: X — V

Query operations
@ de-arraying functions: aggregations
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Relevance in array database domain

Array is functiona: X — V

Irregular time axis
@ calendar is highly irregular,
month lengths differ, leap years
@ but need to analyse by month, season
@ — create additional dimensions
@ has effect on tiling strategies

~ T x
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Ease of use in array database domain

Array is functiona: X — V

Query operation support
@ natively supported?
@ via User Defined Functions (UDF)?

@ expertise needed
@ additional costs involved

..how to implement in benchmark? |
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Suitability cube

Combination of assessments can be called a suitability cube
@ addresses challenges from all relevant sides
@ developers want to address all possibilities
@ users want one single number...

Does modern technology help?

Sl £ (modified image from grarts.com)
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Existing array DB benchmarks

Early attempts: Sequoia 2000°, Paradise®
Standard Science DBMS Benchmark (SS-DB)’
@ applies space-science use case
@ relevant, performs nine queries on astronomical data

e |load data

@ queries raw data

e creates derived data (cooking)
e queries derived data

@ portable, source-code available (but difficult to find...)
— repeatable

@ scalable, covers small to big data volumes, data generator

5Stonebraker 1993
®Patel et al. 1997 rmmﬁn: .
7Cudre-Mauroux et al. 2010
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Existing array DB benchmarks, SS-DB

However...
@ only single-user queries
@ selection of queries seems rather limited
does not address higher-dimensions, such as 4-d, 5-d

— does not fully cover other application domains, such as
geophysics, climate and ocean data

@ only regular time axis
Trade-off between simplicity and functional coverage

@ ease of use, no analysis of array queries used

e natively supported?
e user defined functions

@ result is not a single number...
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Conclusion

@ arrays inherent in Big Data

@ benchmarks for big data should
consider array operations as well

@ suitability cube tries to address many metrics
@ SS-DB good basis for discussion

benchmarks will make us work harder...
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Conclusion
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