Towards Benchmarking Large Arrays in Databases

H. Stamerjohanns P. Baumann

Computer Science
Jacobs University Bremen

WBDB12
An Array DBMS: Rasdaman

Goal of rasdaman database:
- handle raster data
- massive n-dimensional Sensor-, Image-, Model & Statistics DB
- Tile-based architecture
 - n-D array → set of n-D tiles
- adapting storage to access pattern (preserve locality of reference)

1Baumann 1992, Baumann VLDBJ 1994
An Array DBMS: Rasdaman

- declarative, minimal, safe Array Algebra:
 - Intensive user studies: statistics, image, signal processing
- minimally invasive DBMS integration
- new attribute type: array<celltype, extent>

- maps d-dimensional Euclidean hypercube X onto value set V

Array is function $a : X \rightarrow V$
An Array DBMS: Rasdaman

- implements SQL-embedded DML with array operators
 - select / insert / update / delete + *partial update*

```sql
select img.scene.green[x0:x1, y0:y1] > 130
from LandsatArchive as img
where some_cells(img.scene.nir > 127)
```

- Web mapping, image & signal processing statistics, linear algebra, pattern mining, scientific analytics
What is Big Data?

- somehow connected to volume
- but volume is moving target
- not only petabytes are Big Data
What is Big Data?

- unless you are reeeaally big, storage volume is not biggest problem
- to do proper analysis then is the difficulty
- suboptimal access patterns show up
- → inability of existing DB to scale
 - cardinality of data is typically small compared to volume
 - repeated observations of time or space
 - many datasets have inherent temporal or spatial dimensions
 - but not ordered accordingly to preserve locality
 - analysis then results in random-access patterns → sloow.
What is Big Data?

- ETL may not be the right solution...
- big volumes need to be transferred for further processing

Meta-definition:
"Any point in time when data volume forces us to look beyond the tried-and-true methods that are prevalent at that time"²

² A. Jacobs 2009
Array database domain

Diverse world

- different approaches to implement arrays on databases exist
 - MonetDB\(^3\)
 - SciDB\(^4\)
- no unified query language available
- different usage scenarios
 - (web-) service providing access to many users
 - but also personal research tool to analyse data

\(^3\)van Ballegoji et al., 2005, www.monetdb.org

\(^4\)P. Cudre-Mauroux et al., 2009, www.scidb.org
Benchmarks should be...

relevant
- map real-world needs
- rather practice driven
- systematically cover features and data properties
- apply to different application domains

simple
- obviously some trade-off to previous point needed

portable
- as no unified query language available
 - high level description of tasks to fulfill

scalable
Benchmarking Array DBMS

Need to test

- array features
 - dimensionality, cell types
- data properties
 - volume, sparsity
- array query operations
- domain specific features
 - special operations, transformations
What needs to be tested... relevance

number of dimensions

- low-dimensional (1-D - 5-D)
 1-D environmental sensor time series
 2-D satellite images, seafloor maps
 3-D x/y/t image time series
 and x/y/z geophysics data
 4-D x/y/z/t climate and ocean data

- medium-dimensional (6-D - 12-D)
 OLAP

- high-dimensional (up to thousands)
 Data-Mining, collection of features
What needs to be tested... relevance

number of dimensions

- low-dimensional (1-D - 5-D)
 1-D environmental sensor time series
 2-D satellite images, seafloor maps
 3-D x/y/t image time series
 and x/y/z geophysics data
 4-D x/y/z/t climate and ocean data

- medium-dimensional (6-D - 12-D)
 OLAP

- high-dimensional (up to thousands)
 Data-Mining, collection of features
number of dimensions

- low-dimensional (1-D - 5-D)
 - 1-D environmental sensor time series
 - 2-D satellite images, seafloor maps
 - 3-D x/y/t image time series and x/y/z geophysics data
 - 4-D x/y/z/t climate and ocean data

- medium-dimensional (6-D - 12-D)
 - OLAP

- high-dimensional (up to thousands)
 - Data-Mining, collection of features
What needs to be tested... relevance

number of dimensions

- **low-dimensional (1-D - 5-D)**
 1-D environmental sensor time series
 2-D satellite images, seafloor maps
 3-D x/y/t image time series
 and x/y/z geophysics data
 4-D x/y/z/t climate and ocean data

- **medium-dimensional (6-D - 12-D)**
 OLAP

- **high-dimensional (up to thousands)**
 Data-Mining, collection of features
What needs to be tested... relevance

number of dimensions

- low-dimensional (1-D - 5-D)
 1-D environmental sensor time series
 2-D satellite images, seafloor maps
 3-D x/y/t image time series
 and x/y/z geophysics data
 4-D x/y/z/t climate and ocean data

- medium-dimensional (6-D - 12-D)
 OLAP

- high-dimensional (up to thousands)
 Data-Mining, collection of features
 precipitation
 x/y/z/t
What needs to be tested... relevance

Space time cube

- Satellite creates several scenes
- Satellite scene referenced by latitude/longitude + time
- at least twice per year each point should be mapped
- set of scenes that have temporal and spatial overlap

Example query:

- give me the Near-field infrared (NIR) values between 2007 and 2009 in Vienna
Dimensions and cell type constitute array model features

- cell types
 - single
 - records (e.g. colored pixel)
 - domain specific data structures
What needs to be tested... scaleability

Data properties
- Volume of data
 - range MB to PB
- Sparsity of data
 - sparse arrays like statistical data cubes
 - dense arrays like satellite imagery
Relevance in array database domain

Array is function $a : X \rightarrow V$

Query operations
- on X: trimming, slicing
- on V: pixel-wise addition of images
- on the function itself: histogram
Relevance in array database domain

Array is function $a : X \rightarrow V$

Query operations
- de-arraysing functions: aggregations
- querying irregular time axis (most rain in june in last years)
Relevance in array database domain

Array is function \(a : X \rightarrow V \)

Irregular time axis
- calendar is highly irregular, month lengths differ, leap years
- but need to analyse by month, season
- \(\rightarrow \) create additional dimensions
- has effect on tiling strategies
Ease of use in array database domain

Array is function \(a : X \rightarrow V \)

Query operation support
- natively supported?
- via User Defined Functions (UDF)?
 - expertise needed
 - additional costs involved

..how to implement in benchmark?
Suitability cube

Combination of assessments can be called a *suitability cube*

- addresses challenges from all relevant sides
- developers want to address all possibilities
- users want one single number...

Does modern technology help?

(modified image from qrarts.com)
Existing array DB benchmarks

Early attempts: Sequoia 20005, Paradise6
Standard Science DBMS Benchmark (SS-DB)7

- applies space-science use case
- \textit{relevant}, performs nine queries on astronomical data
 - load data
 - queries raw data
 - creates derived data (cooking)
 - queries derived data
- \textit{portable}, source-code available (but difficult to find...)
 → repeatable
- \textit{scalable}, covers small to big data volumes, data generator

5Stonebraker 1993
6Patel et al. 1997
7Cudre-Mauroux et al. 2010
Existing array DB benchmarks, SS-DB

However...

- only single-user queries
- selection of queries seems rather limited
does not address higher-dimensions, such as 4-d, 5-d→ does not fully cover other application domains, such as
gephysics, climate and ocean data
- only regular time axis

Trade-off between simplicity and functional coverage
- *ease of use*, no analysis of array queries used
 - natively supported?
 - user defined functions
- result is not a single number...
Conclusion

- arrays inherent in Big Data
- benchmarks for big data should consider array operations as well
- suitability cube tries to address many metrics
- SS-DB good basis for discussion

benchmarks will make us work harder...