Towards Benchmarking Large Arrays in Databases

H. Stamerjohanns P. Baumann

Computer Science Jacobs University Bremen

WBDB12

An Array DBMS: Rasdaman

Goal of rasdaman database:

- handle raster data
- massive n-dimensional Sensor-, Image-, Model & Statistics DB¹
- Tile-based architecture n-D array → set of n-D tiles
- adapting storage to access pattern (preserve locality of reference)

¹Baumann 1992, Baumann VLDBJ 1994

Benchmarking Large Arrays in Databases

WBDB12 2 / 23

An Array DBMS: Rasdaman

- declarative, minimal, safe Array Algebra:
 - Intensive user studies: statistics, image, signal processing
- minimally invasive DBMS integration
 - new attribute type: array<celltype, extent>

 maps d-dimensional Euclidean hypercube X onto value set V

Array is function $a: X \to V$

An Array DBMS: Rasdaman

implements SQL-embedded DML with array operators

• select / insert / update / delete + partial update

select	<pre>img.scene.green[x0:x1,y0:y1]</pre>	>	130
from	LandsatArchive as img		
where	<pre>some_cells(img.scene.nir > 12</pre>	7)	

 Web mapping, image & signal processing statistics, linear algebra, pattern mining, scientific analytics

- somehow connected to volume
- but volume is moving target
- not only petabytes are Big Data

- unless you are receally big, storage volume is not biggest problem
- to do proper analysis then is the difficulty
- suboptimal access patterns show up
- $\bullet \ \rightarrow$ inability of existing DB to scale
 - cardinality of data is typically small compared to volume
 - repeated observations of time or space
 - many datasets have inherent temporal or spatial dimensions
 - but not ordered accordingly to preserve locality
 - $\bullet\,$ analysis then results in random-access patterns \rightarrow sloow.

- ETL may not be the right solution...
- big volumes need to be transferred for further processing

Meta-definition:

"Any point in time when data volume forces us to look beyond the tried-and-true methods that are prevalent at that time"^{ρ}

²A. Jacobs 2009

H. Stamerjohanns, P. Baumann

Benchmarking Large Arrays in Databases

Diverse world

- different approaches to implement arrays on databases exist
 - MonetDB³
 - SciDB⁴
- no unified query language available
- different usage scenarios
 - (web-) service providing access to many users
 - but also personal research tool to analyse data

³van Ballegoji et al., 2005, www.monetdb.org ⁴P. Cudre-Mauroux et al., 2009, www.scidb.org

Benchmarking Array DBMS

Benchmarks should be...

relevant

- \rightarrow map real-world needs \rightarrow rather practice driven
- systematically cover features and data properties

 apply to different application domains

simple

obviously some trade-off to previous point needed

portable

- as no unified query language available
 - \rightarrow high level description of tasks to fulfill

scalable

[Gray 1993]

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Benchmarking Array DBMS

Need to test

further details follow ...

- array features
 - dimensionality, cell types
- data properties
 - volume, sparsity
- array query operations
- domain specific features
 - special operations, transformations

WBDB12

- low-dimensional (1-D 5-D)
 - 1-D environmental sensor time series
 2-D satellite images, seafloor maps
 3-D x/y/t image time series
 and x/y/z geophysics data
 4-D x/y/z/t climate and ocean data
- medium-dimensional (6-D 12-D) OLAP
- high-dimensional (up to thousands) Data-Mining, collection of features

- low-dimensional (1-D 5-D)
 1-D environmental sensor time series
 2-D satellite images, seafloor maps
 3-D x/y/t image time series
 and x/y/z geophysics data
 4-D x/y/z/t climate and ocean data
- medium-dimensional (6-D 12-D) OLAP
- high-dimensional (up to thousands) Data-Mining, collection of features

- low-dimensional (1-D 5-D)
 1-D environmental sensor time series
 2-D satellite images, seafloor maps
 3-D x/y/t image time series
 and x/y/z geophysics data
 4-D x/y/z/t climate and ocean data
- medium-dimensional (6-D 12-D) OLAP
- high-dimensional (up to thousands) Data-Mining, collection of features

low-dimensional (1-D - 5-D)

1-D environmental sensor time series

- 2-D satellite images, seafloor maps
- 3-D x/y/t image time series

and x/y/z geophysics data

4-D x/y/z/t climate and ocean data

- medium-dimensional (6-D 12-D) OLAP
- high-dimensional (up to thousands) Data-Mining, collection of features

- low-dimensional (1-D 5-D)
 1-D environmental sensor time series
 2-D satellite images, seafloor maps
 3-D x/y/t image time series
 and x/y/z geophysics data
 4-D x/y/z/t climate and ocean data
- medium-dimensional (6-D 12-D) OLAP
- high-dimensional (up to thousands) Data-Mining, collection of features

precipitation x/y/z/t

What needs to be tested... relevance

Space time cube

- Satellite creates several scenes
- Satellite scene referenced by latitude/longitude + time
- at least twice per year each point should be mapped
- set of scenes that have temporal and spatial overlap

Example query:

 give me the Near-field infrared (NIR) values between 2007 and 2009 in Vienna Dimensions and cell type constitute array model features

- cell types
 - single
 - records (e.g. colored pixel)
 - domain specific data structures

Data properties

- Volume of data
 - range MB to PB
- Sparsity of data
 - sparse arrays like statistical data cubes
 - dense arrays like satellite imagery

Relevance in array database domain

Array is function $a: X \to V$

Query operations

• on X: trimming, slicing

- on V: pixel-wise addition of images
- on the function itself: histogram

Benchmarking Large Arrays in Databases

Relevance in array database domain

Array is function $a: X \to V$

Query operations

• de-arraying functions: aggregations

WBDB12

16/23

• querying irregular time axis (most rain in june in last years)

Relevance in array database domain

Array is function $a: X \to V$

Irregular time axis

- calendar is highly irregular, month lengths differ, leap years
- but need to analyse by month, season
- $\bullet \ \rightarrow \text{create additional dimensions}$
- has effect on tiling strategies

Ease of use in array database domain

Array is function $a: X \to V$

Query operation support

- natively supported?
- via User Defined Functions (UDF)?
 - expertise needed
 - additional costs involved

.. how to implement in benchmark?

WBDB12

Combination of assessments can be called a suitability cube

- addresses challenges from all relevant sides
- developers want to address all possibilities
- users want one single number...

WBDB12

Existing array DB benchmarks

Early attempts: Sequoia 2000⁵, Paradise⁶ Standard Science DBMS Benchmark (SS-DB)⁷

- applies space-science use case
- relevant, performs nine queries on astronomical data
 - load data
 - queries raw data
 - creates derived data (cooking)
 - queries derived data
- *portable*, source-code available (but difficult to find...)
 → repeatable
- scalable, covers small to big data volumes, data generator

⁵Stonebraker 1993 ⁶Patel et al. 1997 ⁷Cudre-Mauroux et al. 2010

WBDB12

Existing array DB benchmarks, SS-DB

However...

- only single-user queries
- selection of queries seems rather limited does not address higher-dimensions, such as 4-d, 5-d → does not fully cover other application domains, such as geophysics, climate and ocean data
- only regular time axis
- Trade-off between simplicity and functional coverage
 - ease of use, no analysis of array queries used
 - natively supported?
 - user defined functions
 - result is not a single number...

WBDB12

- arrays inherent in Big Data
- benchmarks for big data should consider array operations as well
- suitability cube tries to address many metrics
- SS-DB good basis for discussion

benchmarks will make us work harder...

Conclusion

WBDB12 23 / 23