
Making Sense of System Performance 

at Scale 
Vinayak Borkar 

UC Irvine 

 

Joint work with Yingyi Bu 



The ASTERIX Project 



Hyracks In a Nutshell 

 Partitioned-parallel platform for data-intensive computing 

 Job = dataflow DAG of operators and connectors 

 Operators consume/produce partitions of data 

 Connectors repartition/route data between operators 

 

 

 

 

 

 



Hyracks: Runtime Task Graph 



Hyracks Library (growing…) 

 Operators 

 File readers/writers: line files, delimited files, HDFS files 

 Mappers: native mapper, Hadoopmapper 

 Sorters: in-memory, external 

 Joiners: in-memory hash, hybrid hash, grace hash 

 Aggregators: hash-based, preclustered 

 BTree Bulk Load, Search, Scan 

 Connectors 

 M:N hash-partitioner 

 M:N hash-partitioning merger 

 M:N range-partitioner 

 M:N range-partitioning merger 

 M:N replicator 

 1:1 



Hyracks System Architecture 

Join

Scan Scan

GroupBy

Write

Join

Scan Scan

GroupBy

Write

Join

Scan Scan

GroupBy

Write

NC1 NC2 NC3

Join

Scan Scan

GroupBy

Write

Join

Scan Scan

GroupBy

Write

Join

Scan Scan

GroupBy

Write

CC

Data flow

Scheduling dependency

Control message



Hyracks (from 2009 to 2011) 

 Built at UCI from the ground up 

 Tested on the infrastructure we had: 

 10 machines, 4 cores each, 12GB / machine 

 Single Rack with 1 GigE network 

 4 spinning disks on each machine 



Hyracks on the Yahoo! Cluster 

 180 machines, 8 cores each, 16GB / machine 

 6 racks, 1GigE between machines, 1GigE top-of-rack 

 4 Spinning disks per machine 

 

 The largest job was 1440-way parallel (as many cores) 

 1440 * 1440 = 2,073,600 logical data flows 



Hyracks – Initial implementation 

 Use Java RMI for control messages 

 Easy to implement 

 No surprise that it was a time bomb waiting to explode 

 Use a TCP connection for each logical data flow 

 Gives excellent isolation across different flows 

 Hadoop has the same design, but no pipelining 



Example: Parallel Aggregation 

OR 

Hash Partitioning 

with Sorted Merging 

Hash Partitioning 

with Random Merging 



Parallel Aggregation 



Analyzing System Behavior 

 Building efficient scalable systems is hard 

 Need a way to understand system behavior at scale 

 Tools for debugging/profiling distributed systems are MIA 

 Each machine has a “local” view of events on the cluster 

 Need to piece together “local views” to understand 

system behavior 

 



Our direction 

 Look at local performance information/logs as a 
partitioned database 

 Use the capabilities of the Big Data Management System 

to analyze system performance 

 Challenge: How do you collect all the information 
without creating the “observer effect”? 


