
Making Sense of System Performance 

at Scale 
Vinayak Borkar 

UC Irvine 

 

Joint work with Yingyi Bu 



The ASTERIX Project 



Hyracks In a Nutshell 

 Partitioned-parallel platform for data-intensive computing 

 Job = dataflow DAG of operators and connectors 

 Operators consume/produce partitions of data 

 Connectors repartition/route data between operators 

 

 

 

 

 

 



Hyracks: Runtime Task Graph 



Hyracks Library (growing…) 

 Operators 

 File readers/writers: line files, delimited files, HDFS files 

 Mappers: native mapper, Hadoopmapper 

 Sorters: in-memory, external 

 Joiners: in-memory hash, hybrid hash, grace hash 

 Aggregators: hash-based, preclustered 

 BTree Bulk Load, Search, Scan 

 Connectors 

 M:N hash-partitioner 

 M:N hash-partitioning merger 

 M:N range-partitioner 

 M:N range-partitioning merger 

 M:N replicator 

 1:1 



Hyracks System Architecture 

Join

Scan Scan

GroupBy

Write

Join

Scan Scan

GroupBy

Write

Join

Scan Scan

GroupBy

Write

NC1 NC2 NC3

Join

Scan Scan

GroupBy

Write

Join

Scan Scan

GroupBy

Write

Join

Scan Scan

GroupBy

Write

CC

Data flow

Scheduling dependency

Control message



Hyracks (from 2009 to 2011) 

 Built at UCI from the ground up 

 Tested on the infrastructure we had: 

 10 machines, 4 cores each, 12GB / machine 

 Single Rack with 1 GigE network 

 4 spinning disks on each machine 



Hyracks on the Yahoo! Cluster 

 180 machines, 8 cores each, 16GB / machine 

 6 racks, 1GigE between machines, 1GigE top-of-rack 

 4 Spinning disks per machine 

 

 The largest job was 1440-way parallel (as many cores) 

 1440 * 1440 = 2,073,600 logical data flows 



Hyracks – Initial implementation 

 Use Java RMI for control messages 

 Easy to implement 

 No surprise that it was a time bomb waiting to explode 

 Use a TCP connection for each logical data flow 

 Gives excellent isolation across different flows 

 Hadoop has the same design, but no pipelining 



Example: Parallel Aggregation 

OR 

Hash Partitioning 

with Sorted Merging 

Hash Partitioning 

with Random Merging 



Parallel Aggregation 



Analyzing System Behavior 

 Building efficient scalable systems is hard 

 Need a way to understand system behavior at scale 

 Tools for debugging/profiling distributed systems are MIA 

 Each machine has a “local” view of events on the cluster 

 Need to piece together “local views” to understand 

system behavior 

 



Our direction 

 Look at local performance information/logs as a 
partitioned database 

 Use the capabilities of the Big Data Management System 

to analyze system performance 

 Challenge: How do you collect all the information 
without creating the “observer effect”? 


