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Hyracks In a Nutshell 

 Partitioned-parallel platform for data-intensive computing 

 Job = dataflow DAG of operators and connectors 

 Operators consume/produce partitions of data 

 Connectors repartition/route data between operators 

 

 

 

 

 

 



Hyracks: Runtime Task Graph 



Hyracks Library (growing…) 

 Operators 

 File readers/writers: line files, delimited files, HDFS files 

 Mappers: native mapper, Hadoopmapper 

 Sorters: in-memory, external 

 Joiners: in-memory hash, hybrid hash, grace hash 

 Aggregators: hash-based, preclustered 

 BTree Bulk Load, Search, Scan 

 Connectors 

 M:N hash-partitioner 

 M:N hash-partitioning merger 

 M:N range-partitioner 

 M:N range-partitioning merger 

 M:N replicator 

 1:1 



Hyracks System Architecture 
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Hyracks (from 2009 to 2011) 

 Built at UCI from the ground up 

 Tested on the infrastructure we had: 

 10 machines, 4 cores each, 12GB / machine 

 Single Rack with 1 GigE network 

 4 spinning disks on each machine 



Hyracks on the Yahoo! Cluster 

 180 machines, 8 cores each, 16GB / machine 

 6 racks, 1GigE between machines, 1GigE top-of-rack 

 4 Spinning disks per machine 

 

 The largest job was 1440-way parallel (as many cores) 

 1440 * 1440 = 2,073,600 logical data flows 



Hyracks – Initial implementation 

 Use Java RMI for control messages 

 Easy to implement 

 No surprise that it was a time bomb waiting to explode 

 Use a TCP connection for each logical data flow 

 Gives excellent isolation across different flows 

 Hadoop has the same design, but no pipelining 



Example: Parallel Aggregation 

OR 

Hash Partitioning 

with Sorted Merging 

Hash Partitioning 

with Random Merging 



Parallel Aggregation 



Analyzing System Behavior 

 Building efficient scalable systems is hard 

 Need a way to understand system behavior at scale 

 Tools for debugging/profiling distributed systems are MIA 

 Each machine has a “local” view of events on the cluster 

 Need to piece together “local views” to understand 

system behavior 

 



Our direction 

 Look at local performance information/logs as a 
partitioned database 

 Use the capabilities of the Big Data Management System 

to analyze system performance 

 Challenge: How do you collect all the information 
without creating the “observer effect”? 


