Making Sense of System Performance

at Scale

Vinayak Borkar

UC Irvine

Joint work with Yingyi Bu

The ASTERIX Project

AsterixQL
HKQuery Hive QL Figlet
Asterix ; ;
Data
Mgmt. ux Other HLL Hadoop Pregel IMRU
System Query Compilers M/RJob Job Job

Hyracls Job

$

Algebricks Hadoop M/R
Algebra Layer Compatibility

Hyracks Data-parallel Platform

Hyracks In a Nutshell

Partitioned-parallel platform for data-intensive computing

Job = dataflow DAG of operators and connectors
O Operators consume/produce partitions of data
O Connectors repartition/route data between operators

{MC1: custl . dat}
{MC2: cust2 . dat}

Scanner | egrhash(c CUSTKEY)]
(CUSTDMER]\ .

Hash]oin HashGroupby

C_CUSTKEY ol comkrseemenT BT fyriter
= 0_CUSTKEY E3 Agg: count{O_ORDEKEY
Scanner [hash
(ORDERS) [“E2[hash(0_CUSTKEY)] (C_MKTSEGMENT)]

{NC3: ordl.dat, NC2: ordl . dat}
1MC1: cust2 dat, NC5: ord2.dat}

Hyracks: Runtime Task Graph

JB1..4 : Join Build . TR msneroas HA1..3 : Hash Aggregate
. .Il.-.....‘

= 0G1..3: Output Generator

Stage 3 :

A's output is hash

distributed tc B
A's output is piped to B directly

A--->B

B blocks until A completes A— »B

A's output is piped to B and multiple inputs
at B are merged into one

Hyracks Library (growing...)

Operators

File readers/writers: line files, delimited files, HDFS files
Mappers: native mapper, Hadoopmapper

Sorters: in-memory, external

Joiners: in-memory hash, hybrid hash, grace hash
Aggregators: hash-based, preclustered

BTree Bulk Load, Search, Scan

Connectors

M:N hash-partitioner

M:N hash-partitioning merger
M:N range-partitioner

M:N range-partitioning merger
M:N replicator

1:1

Hyracks System Architecture

CC
_» Write oy Write
e A
,/ . .
GroupB GroupBy
\
v A A
\
/
\\ t _|-» Join
e B
g RAEE
/ \ .’ A
/ \ \
/1 | [Scan Sc
1 /
7 \
/, \
P \
Vi ‘\ \
7 '
] Write',
/ T h
/
1
N 4
+ GroupBy
\ ||
] -
\ H
~Join
/ 14—’—
Scan Scan| [gcan Scan | [Scan Scan
NC1 NC3
<« --» (Control message

&> Scheduling dependency

—— Data flow

Hyracks (from 2009 to 2011)

Built at UCI from the ground up

Tested on the infrastructure we had:

O 10 machines, 4 cores each, 12GB / machine
O Single Rack with 1 GigE network

O 4 spinning disks on each machine

Hyracks on the Yahoo! Cluster

180 machines, 8 cores each, 16GB / machine

6 racks, 1GigE between machines, 1GIgE top-of-rack

4 Spinning disks per machine

The largest job was 1440-way parallel (as many cores)

1440 * 1440 = 2,073,600 logical data flows

Hyracks — Initial implementation

Use Java RMI for control messages
O Easy to implement
O No surprise that it was a time bomb waiting to explode

Use a TCP connection for each logical data flow
O Gives excellent isolation across different flows
O Hadoop has the same design, but no pipelining

Example: Parallel Aggregation

e Groupb ¢ Groupb
Hash Partitioning = ? -
with Sorted Merging - 22, Sorted
Groupby % Groupby

OR

. . Groupby Groupby
Hash Partitioning
with Random Merging
GS.orTed Sorter Sorted
roupby Groupby

Parallel Aggregation

Scalup Experiments (response time)

B Hyracks M Hyracks (hash connectar)
3981.07

316228

2511.89

Time (s)

1995 26

158489

50 70 an 110 130
Number of Machines

Analyzing System Behavior

Building efficient scalable systems is hard

Need a way to understand system behavior at scale
Tools for debugging/profiling distributed systems are MIA
Each machine has a “local” view of events on the cluster

Need to piece together “local views” to understand
system behavior

Look at local performance information/logs as @
partitioned database

Use the capabilities of the Big Data Management System
to analyze system performance

Challenge: How do you collect all the information
without creating the “observer effect”?

