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Hyracks In a Nutshell

Partitioned-parallel platform for data-intensive computing

Job = dataflow DAG of operators and connectors
O Operators consume/produce partitions of data
O Connectors repartition/route data between operators
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Hyracks: Runtime Task Graph

JB1..4 : Join Build . TR msneroas HA1..3 : Hash Aggregate
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= 0G1..3: Output Generator

Stage 3 :

A's output is hash

distributed tc B
A's output is piped to B directly

A--->B

B blocks until A completes A— »B

A's output is piped to B and multiple inputs
at B are merged into one



Hyracks Library (growing...)

Operators

File readers/writers: line files, delimited files, HDFS files
Mappers: native mapper, Hadoopmapper

Sorters: in-memory, external

Joiners: in-memory hash, hybrid hash, grace hash
Aggregators: hash-based, preclustered

BTree Bulk Load, Search, Scan

Connectors

M:N hash-partitioner

M:N hash-partitioning merger
M:N range-partitioner

M:N range-partitioning merger
M:N replicator

1:1



Hyracks System Architecture
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Hyracks (from 2009 to 2011)

Built at UCI from the ground up

Tested on the infrastructure we had:

O 10 machines, 4 cores each, 12GB / machine
O Single Rack with 1 GigE network

O 4 spinning disks on each machine



Hyracks on the Yahoo! Cluster

180 machines, 8 cores each, 16GB / machine

6 racks, 1GigE between machines, 1GIgE top-of-rack

4 Spinning disks per machine

The largest job was 1440-way parallel (as many cores)

1440 * 1440 = 2,073,600 logical data flows



Hyracks — Initial implementation

Use Java RMI for control messages
O Easy to implement
O No surprise that it was a time bomb waiting to explode

Use a TCP connection for each logical data flow
O Gives excellent isolation across different flows
O Hadoop has the same design, but no pipelining



Example: Parallel Aggregation

e Groupb ¢ Groupb
Hash Partitioning = ? -
with Sorted Merging - 22, Sorted
Groupby % Groupby

OR

. . Groupby Groupby
Hash Partitioning
with Random Merging
GS.orTed Sorter Sorted
roupby Groupby




Parallel Aggregation

Scalup Experiments (response time)
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Analyzing System Behavior

Building efficient scalable systems is hard

Need a way to understand system behavior at scale
Tools for debugging/profiling distributed systems are MIA
Each machine has a “local” view of events on the cluster

Need to piece together “local views” to understand
system behavior



Look at local performance information/logs as @
partitioned database

Use the capabilities of the Big Data Management System
to analyze system performance

Challenge: How do you collect all the information
without creating the “observer effect”?



