BigBench: Big Data Benchmark Proposal

Ahmad Ghazal, Minqing Hu, Tilmann Rabl, Alain Crolotte, Francois Raab, Meikel Poess, Hans-Arno Jacobsen
BigBench

- Initial work presented at 1st WBDB, San Jose
- Based on a product retailer
- End to end benchmark
- Focus on
 - Parallel DBMS
 - MR engines
- Collaboration with Industry & Academia
 - Teradata
 - University of Toronto
 - InfoSizing
 - Oracle
- Full paper submitted to SIGMOD 2013
BigBench (outline)

- **Data Model**
 - Variety, Volume, Velocity
 - Variety:
 - structured from TPC-DS
 - Semi-structured: web logs
 - Un-structured: review text

- **Data Generator**
 - PDGF for structured data
 - Enhancement: Semi-structured & Text generation

- **Workload specification**
 - Main driver: retail big data analytics
 - Covers: data source, declarative & procedural and machine learning algorithms.

- **Evaluation**
 - Done on Teradata Aster
 - Queries written using SQL-MR
BigBench data model
BigBench data model

• **Volume**
 - Based on scale factor
 - Similar to TPC-DS scaling
 - Weblogs & product reviews also scaled

• **Velocity**
 - Periodic refreshes for all data
 - Different velocity for different areas
 • $V_{structured}$
 • $V_{unstructured}$
 • $V_{semistructured}$
 - Queries run with refresh
BigBench data generator

- "Parallel Data Generation Framework“ PDGF
 - For the structured part of model
 - Scale factor similar to TPC-DS

- Extensions to PDGF for web logs & product reviews

- Web logs: retail customers/guests visiting site
 - Web logs similar to apache web server logs
 - Coupled with structured part
 - Sizing based on scale factor

- Product reviews: Customers and guest users
 - Algorithm based on Markov chain
 - Real data set sample input
 - Coupled with structured and based on scale factor as well
BigBench Workload

• 30 queries
• Specified in English
• No required syntax
• Driven by big data retail analytics
 - Adapted from McKinsey
BigBench Workload (continued)

Retail analytics 5 areas

• **Marketing**
 - Cross-selling
 - Customer micro-segmentation
 - Sentiment analysis
 - Enhancing multichannel consumer experiences

• **Merchandising**
 - Assortment optimization
 - Pricing optimization

• **Operations**
 - Performance transparency
 - Product return analysis

• **Supply chain**
 - Inventory management

• **Reporting (customers and products)**
Technical Functions

• **Data source dimension**
 - Structured
 - Semi-structured
 - Un-structured

• **Processing type dimension**
 - Declarative (SQL, HQL)
 - Procedural
 - Mix of both

• **Analytic technique dimension**
 - Statistical analysis: correlation analysis, time-series, regression
 - Data mining: classification, clustering, association mining, pattern analysis and text analysis
 - Simple reporting: ad hoc queries not covered above
BigBench Evaluation

- BigBench proof of concept
- Can be done On DBMS
 - Typically data loaded into tables
 - Possibly parsing weblogs to get schema
 - Reviews captured as VARCHAR or BLOB fields
 - Queries run using SQL + UDF

- Can be done on MR engine
 - Data can be loaded on DFS like HDSF
 - MR, HQL, PigLatin can be used

- DBMS and MR engine
 - DBMS with Hadoop connectors
 - Data can be placed and split among both
 - Processing can also be split among two
BigBench Evaluation (continued)

• Done on Teradata Aster
 - Has functionality to run BigBench

• Data generation
 - DSDGen produced structured part
 - PDGF+ produced semi-structured and un-structured

• Data loaded into tables
 - Weblogs table
 - Product reviews table

• Queries
 - SQL-MR syntax
BigBench Evaluation (continued)

- Example query
- Perform category affinity analysis for products purchased online together.
 - Computes the probability of browsing products from a category after customers viewed items from another category.
 - Referred as market basket as well
- Business case: Marketing
 - cross-selling
- Type of source: structured
- Processing type : mix of declarative and procedural
- Analytic type: data mining
 - Affinity analysis
SELECT
category_cd1 AS category1_cd,
category_cd2 AS category2_cd, COUNT(*) AS cnt
FROM
 basket_generator (
 ON
 (SELECT i. i_category_id AS category_cd,
 s. ws_bill_customer_sk AS customer_id
 FROM web_sales s INNER JOIN item i
 ON s. ws_item_sk = i_item_sk
)
 PARTITION BY customer_id
 BASKET_ITEM (' category_cd ')
 ITEM_SET_MAX (500)
)
GROUP BY 1,2
order by 1,3,2;
Next steps

• BigBench: industry standard benchmark.
 - Data, workload and metric speciation details.

• Provide a downloadable kit
 - Finalize implementation of data and query generators.

• Proof of concept
 - Include velocity and multi-user test.
 - Run the benchmark on one the Hadoop ecosystem