Second Workshop on Big Data Benchmarking: WBDB2012.in

WELCOME!

Acknowledgements

- Local organization:
 - Chandrashekhar Sahasrabudhe, Persistent Systems
 - Arun Kadekode, Soft-Corner
 - Infosys
 - Computer Society of India Div II, SIGDATA/COMAD
- Other WBDB industry sponsors
 - Seagate, Greenplum, NetApp, <u>Brocade, Cisco</u>,
 Mellanox
- US National Science Foundation, NSF

Workshop Objectives

- Further the objective of defining Big Data Benchmarks
- Build upon efforts so far, since early 2012
 - First WBDB workshop
 - Meetings of the CLDS center, San Diego
 Supercomputer Center
- Make progress in defining rules and parameters for the <u>BigData100 List</u>
- Set the parameters for the next WBDB in China in July

Meeting Structure

- Interactive meeting
 - Don't get distracted with email/chat/tweet
- Invited talks plus Submitted papers
- Parallel discussion sessions
- Reconvene in plenary with a report back
- Flexible structure...

Agenda Day 1: Monday 17th

0830 0900	Breakfast
0900 0930	Opening Remarks, Chaitan Baru, SDSC
0930 1015	Sponsor talk - Persistent Systems, Mukund Deshpande, VP, Persistent Systems, Lead, Big Data Group
1015 1030	Participant introductions
1030 1100	Lessons from Industry Standard Benchmarking, Raghunath Nambiar,
Cisco	
1100 1130	Coffee Break
1130 1200	Introduction to PDGF, Tilmann Rabl, U of Toronto
1200 1220	BigBench, Ahmad Ghazal, Teradata
1220 1240	Making Sense of System Performance at Scale, Vinayak Borkar, UC
Irvine	
1240 1300	Stratosphere, Kostas Tzoumas
1300 1430	Lunch
1430 1450	Presentation of the discussion topic: BigData100, Raghunath Nambiar
1450 1630	Discussion
1630 1700	Tea / Coffee Break
1700 1730	Discussion and Summarization
1730 1800	Dinner at Courtyard Mariott

Agenda Day 2: Tuesday 18th

0830 0900 Breakfast

0900	0910	Recap of Day 1, Chaitan Baru, SDSC
0910	0930	UIDAI, Rajendra Kumar, UIDAI
0930	0950	Enterprise Use Cases for Big Data Platforms, Susheel Kaushik, Greenplum
0950	1010	Benchmarking MapReduce in a High Performance Computing Network Environment, Lessons Learned and Results Found, Sreevathsa
		Doddabalapur, Mellanox
1010	1030	Brocade presentation, Edgar Dias, Brocade
1030	1050	Optimizing Hadoop Deployment on Gordon Data Intensive Supercomputer Amit Majumdar, SDSC
1050	1110	A Micro-benchmark Suite for Evaluating HDFS Operations on Modern Clusters, Nusrat Islam, Ohio State University

1110 1140 Coffee Break

Agenda: Day 2, Tuesday 18th

1110	1140	Coffee Break
1140	1200	The implications of diverse data sets of different scales for big data
bench	mark,	Jia, Zhen
1200	1220	Benchmarking Large Arrays in Databases, Heinrich Stamerjohanns
1220	1240	Big Data Provenance: Challenges and Potential Implications for Benchmarking, Boris Glavic
1240	1300	Unleashing Semantics of Research Data, Florian Stegmaier
1300	1400	Lunch
1400	1420	NetApp Presentations, TBN
1420	1435	Late Binding, Stephen Brobst
1435	1445	Big Data, T. V. Gopal
1445	1500	Presentation of the discussion topic: 1000-node Big Data Challenge
1500	1600	Discussion
1600	1630	Tea / Coffee Break
1630	1700	Discussion and Summarization
1700	1730	Workshop Conclusion and Next Steps

Context and Background

Chaitan Baru

Director, Center for Large-Scale Data Systems Research (CLDS)

Associate Director Data Initiatives, San Diego Supercomputer Center University of California San Diego

First Workshop on Big Data Benchmarking, May 2012, San Jose Invited Attendee Organizations

- Actian
- AMD
- BMMsoft
- Brocade
- CA Labs
- Cisco
- Cloudera
- Convey Computer
- CWI/Monet
- Dell
- EPFL
- Facebook
- Google
- Greenplum
- Hewlett-Packard

- Hortonworks
- Indiana Univ / Hathitrust Research Foundation
- InfoSizing
- Intel
- LinkedIn
- MapR/Mahout
- Mellanox
- Microsoft
- NSF
- NetApp
- NetApp/OpenSFS
- Oracle
- Red Hat

- San Diego Supercomputer Center
- SAS
- Scripps Research Institute
- Seagate
- Shell
- SNIA
- Teradata Corporation
- Twitter
- UC Irvine
- Univ. of Minnesota
- Univ. of Toronto
- Univ. of Washington
- VMware
- WhamCloud
- Yahoo!

CLDS
Center for Large-scale Data Systems Res

Topics discussed

- Audience: Who is the audience for such a benchmark?
- Application: What is the application that should be modeled?
- <u>Single benchmark spec</u>: Is it possible to develop a single benchmark to capture characteristics of multiple applications?
- <u>Component vs. end-to-end benchmark</u>. Is it possible to factor out a set of benchmark "components", which can be isolated and plugged into an end-to-end benchmark(s)?
- <u>Paper and Pencil vs Implementation-</u>based. Should the implementation be specification-driven or implementation-driven?
- Reuse. Can we reuse existing benchmarks?
- <u>Benchmark Data</u>. Where do we get the data from?
- <u>Innovation or competition</u>? Should the benchmark be for innovation or competition?

Audience: Who is the primary audience for a big data benchmark?

- Customers
 - → Workload should preferably be expressed in
 - English
 - Or, a declarative Language (unsophisticated user)
 - But, not a procedural language (sophisticated user)
 - Want to compare among different vendors
- Vendors
 - Would like to sell machines/systems based on benchmarks
- Computer science/hardware research is also an audience
 - Niche players and technologies will emerge out of academia
 - Will be useful to train students on specific benchmarking

Applications: What application should we model?

- Possibilities
 - An application that somebody could donate
 - An application based on empirical data
 - Examples from scientific applications
 - Multi-channel retailer-based application, like the amended TPC-DS for Big Data?
 - Mature schema, large scale data generator, execution rules, audit process exists.
 - "Abstraction" of an Internet-scale application, e.g. data management at the Facebook site, with synthetic data

Single Benchmark vs Multiple

- Is it possible to develop a single benchmark to represent multiple applications?
- Yes, but not desired if there is no synergy between the benchmarks, e.g. say, at the data model level
 - Synthetic Facebook application might provide context for a single benchmark
 - Click streams, data sorting/indexing, weblog processing, graph traversals, image/video data, ...

Component benchmark vs. end-to-end benchmark

- Are there components that can be isolated and plugged into an end-to-end benchmark?
- The benchmark should consist of individual components that ultimately make up an end-to-end benchmark
- The benchmark should include a component that extracts large data
 - Many data science applications extract large data and then visualize the output
 - Opportunity for "pushing down" viz into the data management system

Paper and Pencil / Specification driven versus Implementation driven

- Start with an implementation and develop specification at the same time
- Some post-workshop activity has begun in this area
 - Data generation; sorting; some processing

Where Do we Get the Data From?

- Downloading data is not an option
- Data needs to be generated (quickly)
- Examples of actual datasets from scientific applications
 - Observational data (e.g. LSST), simulation outputs
- Using existing data generators (TPC-DS, TPC-H)
- Data that is generic enough with good characteristics is better than specific data

Should the benchmark be for innovation or competition?

- Innovation and competition are not mutually exclusive
 - Should be used for both
 - The benchmark should be designed for competition, such a benchmark will then also be used internally for innovation
- TPC-H is a prime example of a benchmark model that could drive competition and innovation (if combined correctly)

Can we reuse existing benchmarks?

- Yes, we could but we need to discuss:
 - How much augmentation is necessary?
 - Can the benchmark data be scaled
 - If the benchmark uses SQL, we should not require it
- Examples: but none of the following could be used unmodified
 - Statistical Workload Injector for Map Reduce (SWIM)
 - GridMix3 (lots of shortcomings)
 - Open source
 - TPC-DS
 - YCSB++ (lots of shortcomings)
 - Terasort strong sentiment for using the strong sentiment for using sentiment for usin

- Decision support benchmark from Transaction Processing Performance Council
- http://www.tpc.org/tpcds/spec/tpcds_1.1.0.pdf
- Why build on top of TPC-DS?
- Volume :
- No theoretical limit
- Tested up to 100 TB
- Velocity: rolling updates
- Variety

TERADATA. aster data

Ahmad Ghazal, Aster

Keep in mind principles for good benchmark design

- Self-scaling, e.g. TPC-C
- Comparability between scale factors
 - Results should be comparable at different scales

Technology agnostic (if meaningful to the

application)

Simple to run

TPC

- + Longevity: TPC-C has carried the load for 20 years
- + Comparability
- Audit requirements and strict detailed run rules mean one can compare results published by two different entities
- + Scaling
 - Results just as meaningful at the high-end of the market as at the lowend; as relevant on clusters as on single servers
- Hard and expensive to run
- No kit
- DeWitt clauses

Reza Taheri, VMWare

Other considerations

- Extrapolating Results
 - TPC benchmarks typically run on "over-specified" systems
 - i.e. Customer installations may have less hardware than benchmark installation (SUT)
 - Big Data Benchmarking may be opposite
 - May need to run benchmark on systems that are smaller than customer installations
- Elasticity and durability
 - TPC runs ACID outside the performance window
 - Big data systems may need to be intrinsically elastic and able to cope with failures

Price / cost

- For a **price/performance** metric, what is the most useful quantity for price?
- How can we capture price in a simple, intuitive, meaningful way...?

Outcomes from first workshop

- Formation of a Big Data Benchmarking Community (BDBC)
 - Biweekly phone conferences
 - Contact <u>baru@sdsc.edu</u> if you are interested in being on the mailing list for this
- Paper in TPCTC
 - "Setting the direction for big data benchmark standards," in TPCTC 2012, VLDB2012, Aug 27-31, Istanbul, Turkey

Next Steps

- Defining the BigData100 list
 - Session on Big Data Benchmarking and the BigData100 List at Strata Conference, February 2013, Santa Clara
- Third WBDB in Xi'an, China, July 9-10, 2013
 - Local organization: Shanxi Supercomputing Center and IBM China

Connecting on social media

- Linkedin:www.linkedin.com/groups/CLDS Big Data
- Twitter @CLDS_BigData

Other Next Steps

- Short/Medium-term
 - Generate 100TB TPC-DS + 10x (1PB) semistructured and/or structured data?
 - To understand the data generation issues
 - Obtain genomic, spatial(?), graph data and run simple operations?
 - To assess what it takes, and do it in a BDB context
- Medium-term (with short-term deadline)
 - Proposal to NSF on alpha, beta phases of the big data benchmarking effort
 - Establish benchmarking resources
 - Hardware testbeds at SDSC; large cluster at Greenplum; Google shared cycles

